Technology Comparison

“One of these things is not like the other”
Brad Marshall
brad.marshall@gmail.com

Who am [|?

e 20 years+ of being a professional Linux geek

e \Worked at small software development company, university, Linux vendor and
cloud provider over this time

e Seen lots of technologies come and go

Brief History of Time*WComputing

Started out as a single computer you ran things on

Then you clustered the computers to work together

Then hardware got so fast sometimes you wanted to run more on

Found things got complicated smooshing different things together, wanted
separation

VMs were born - great for a while but then other problems started popping up
e How to take something from development into production? Containers were
born

Containers vs Virtual Machines

e \Virtual machines are a emulated machine running on top of a hypervisor
o Has its own kernel, TCP stack, OS install etc

e Basically a fake version of a real server running
e Examples are KVM, VMWare ESX, HyperV, VirtualBox, Parallels etc

e Containers provide service isolation on the operating system
o Shares the kernel with the underlying server - so can’t run Windows on a Linux server
o Easy way of sharing an application configuration and code between people

e Like a mobile application, everything packaged together ready to run
e Examples are LXC/LXD, Docker, Rkt, OpenVZ, FreeBSD Jails, Solaris Zones

How Containers Help

e \ery lightweight - not booting a whole OS, so fast to start

e Started out by a developer writing an application on their system, then
passing over to a team to deploy

e |Issues with not knowing exactly what the developer created it on, what
versions of things they used etc

e Containerisation means developers can pass exactly the image they used,
and exactly the code they used to deployment team

e Have a common language to talk, not just throw over the wall and walk away

Docker vs LXC

e LXC is an OS level container, you run multiple applications inside it
o Like a lightweight VM if you can use the same kernel

e Docker is an application level container, with all the dependencies inside it
o Many apps on Docker Hub to use as a starting point
o Basically provides templates for existing applications
o Useful for sharing the exact same experience between dev and prod

Kubernetes

e Platform for managing and operating containerised workloads and services
e Provides options for:

o Deployment

o Scaling

o Load balancing

o Monitoring

o Logging
e Developers can build a container on their own computer and then push up to

k8s to scale it

Openshift vs Kubernetes

OpenShift is a commercial version of Kubernetes

Only runs on RHEL

OKD is open sourced version, can run anywhere

Get support from RH at a cost

Released on a slightly different schedule

Some features are slightly different, added before Kubernetes had them
o Routers on OpenShift vs Ingress on Kubernetes

Kubernetes vs Docker-swarm

e Docker Swarm

O O O O O

Turns a pool of Docker hosts into a single cluster

Exposes only things done by docker

Less complex than Kubernetes, so easier to get up to speed

Compatible with docker commands so easier transition from current Docker envs
Some of the more useful features are in Enterprise edition - so $$$$

e Kubernetes

O O O

All in one framework that handles HA / scaling / failing nodes etc
More complex, so harder to learn

More included by default - logging, dashboards, etc

Currently seems to be the leader, even Docker is pushing it

Cattle vs Pets

Might have heard about cattle vs pets
Are we farmers now?
Different approach over time to maintaining systems
TL;DR
o If a pet goes down its all hands on deck to replace it
o If a cattle node goes down, simply spawn up another one - even
automatically

Pets

Pets vs Cattle - Pets

Early days you'd install a computer

Argue over the carefully picked hostname for it

Hand crafted an installation

“Lovingly” watched as it grew and evolved over time

Eventually it would be a tangled mess of interconnecting dependencies
Treated it like a pet and looked after it - if it disappeared could you even
reproduce it?

Cattle

Pets vs Cattle - Cattle

e Containers and better deployment methods means we don’t have to keep
things around

e If a serverisn’t working right, take it out and replace it

e Easy to do with the right deployment and scaling technology

e Can still keep the misbehaving server for diagnose, but getting it out of
production and replace it first

e Allows easy scalability - just add more cattle

e No server is irreplacable

Infrastructure as Code (laC)

New paradigm for managing servers

Configuration is defined in files rather than a running system

Can be done on bare metal hardware as well as cloud

Increases the repeatability of deployments and scaling systems
Usually involves configuration management / orchestration and Cl / CD
Server is not source of truth for config

Not just config backups

Push from code rather than pull from server

Deployment vs Provisioning vs Orchestration vs
Configuration Management

Deployment is a rollout of an application onto an existing server
Provisioning is getting a server ready to use

Configuration Management is configuring servers in an automated and repeatable
fashion

Orchestration is coordinating multiple systems together

Configuration Management

All have Linux servers and Linux/Windows agents

Tool Arch Language Setup Deployment
Puppet Multi-master Puppet DSL and | Master and Pull
Ruby ERB agent
templates
Chef Master-slave Ruby DSL Master and Pull
agent
Ansible Masterless YAML Master Push
anywhere, ssh
to clients
SaltStack Multiple masters | YAML Master and Push
configured minions

Mutable vs Immutable Infrastructure

e Mutable Infrastructure
o Uses config management or similar to roll out changes to services
o Can lead to config drift over time - ie, upgrade a package, config can change
o Perhaps config mgmt doesn’t cover everything on the node

e |mmutable Infrastructure

o No changes made to running systems
o Use containers / VMs that are replaced by new images

Cl/CD

e Whatis CI/CD?
e Short for Continuous Integration / Continuous Deployment
e Don’t need to do both, but term is together because the techniques are so
close
e Continuous Integration
o All changes to codebase are tested before being accepted in
e Continuous Deployment
o After changes have been tested they can be rolled out to either testing or
production
e Uses a tool like Jenkins, CircleCl, Atlassian Bamboo or TeamCity

Storage - First we played with blocks

e Filesystems made from single disks attached to computers

e Grew to RAID to “cluster” disks together

e Then grew to SANs/NAS where the disks weren'’t directly attached to
computers

e Then grew to distributed storage (Gluster, DRDB, ZFS, Ceph etc)

Block Storage

Block storage is like traditional filesystems

Storage presented to the system using it as a raw device
Files are split up into raw blocks of data

Formatted and mounted on the file system

Like renting space from a storage unit
o Given a space that is yours
o You control how things are stored inside the space
o Usually charged for the entire allocated space

e Strong consistency - read request must give the latest version of data

Storage - Object

Next step was object storage

Abstracts away the filesystem details

Metadata and access control stored on the object

Unstructured storage of files

Don’t need to bother with disk failures and making file systems etc
o Of course someone does, just not you

Object Storage

e Examples are S3, Swift, etc
e Accessed via an API, best for unstructured data

e Like storing your items in a cloak room

o Your ticket is the API to retrieve it
o Can be charged on a per item basis

e Unable to edit incrementally, must totally replace the file
e Solves the problems with data growth rate

o Tried to expand a block base storage beyond hundreds of petabytes?
o What about doing a filesystem check on it?

e Actual storage in the back end doesn’t matter, can be changed
e Eventually consistent, so can scale well

So What Is The Cloud?

e So whatis the cloud?

o Someone else's computers, obviously
o Or maybe its your own computers

e API driven virtual machines / containers / functions

e \We’re basically providing more and more advanced APlIs to cover a lot of
uncomfortable and hard things

e Someone still has to do it

e Basically moving the responsibility away from you for the boring stuff

e Lets you focus on what matters to you

Questions?

Any questions?

Contact me at brad.marshall@amail.com

or @bradleymarshall on Twitter

mailto:brad.marshall@gmail.com

