
Technology Comparison
“One of these things is not like the other”

Brad Marshall
brad.marshall@gmail.com

Who am I?
● 20 years+ of being a professional Linux geek
● Worked at small software development company, university, Linux vendor and

cloud provider over this time
● Seen lots of technologies come and go

Brief History of Time^WComputing
● Started out as a single computer you ran things on
● Then you clustered the computers to work together
● Then hardware got so fast sometimes you wanted to run more on
● Found things got complicated smooshing different things together, wanted

separation
● VMs were born - great for a while but then other problems started popping up
● How to take something from development into production? Containers were

born

Containers vs Virtual Machines
● Virtual machines are a emulated machine running on top of a hypervisor

○ Has its own kernel, TCP stack, OS install etc

● Basically a fake version of a real server running
● Examples are KVM, VMWare ESX, HyperV, VirtualBox, Parallels etc

● Containers provide service isolation on the operating system
○ Shares the kernel with the underlying server - so can’t run Windows on a Linux server
○ Easy way of sharing an application configuration and code between people

● Like a mobile application, everything packaged together ready to run
● Examples are LXC/LXD, Docker, Rkt, OpenVZ, FreeBSD Jails, Solaris Zones

How Containers Help
● Very lightweight - not booting a whole OS, so fast to start
● Started out by a developer writing an application on their system, then

passing over to a team to deploy
● Issues with not knowing exactly what the developer created it on, what

versions of things they used etc
● Containerisation means developers can pass exactly the image they used,

and exactly the code they used to deployment team
● Have a common language to talk, not just throw over the wall and walk away

Docker vs LXC
● LXC is an OS level container, you run multiple applications inside it

○ Like a lightweight VM if you can use the same kernel

● Docker is an application level container, with all the dependencies inside it
○ Many apps on Docker Hub to use as a starting point
○ Basically provides templates for existing applications
○ Useful for sharing the exact same experience between dev and prod

Kubernetes
● Platform for managing and operating containerised workloads and services
● Provides options for:

○ Deployment
○ Scaling
○ Load balancing
○ Monitoring
○ Logging

● Developers can build a container on their own computer and then push up to
k8s to scale it

Openshift vs Kubernetes
● OpenShift is a commercial version of Kubernetes
● Only runs on RHEL
● OKD is open sourced version, can run anywhere
● Get support from RH at a cost
● Released on a slightly different schedule
● Some features are slightly different, added before Kubernetes had them

○ Routers on OpenShift vs Ingress on Kubernetes

Kubernetes vs Docker-swarm
● Docker Swarm

○ Turns a pool of Docker hosts into a single cluster
○ Exposes only things done by docker
○ Less complex than Kubernetes, so easier to get up to speed
○ Compatible with docker commands so easier transition from current Docker envs
○ Some of the more useful features are in Enterprise edition - so $$$$

● Kubernetes
○ All in one framework that handles HA / scaling / failing nodes etc
○ More complex, so harder to learn
○ More included by default - logging, dashboards, etc
○ Currently seems to be the leader, even Docker is pushing it

Cattle vs Pets
● Might have heard about cattle vs pets
● Are we farmers now?
● Different approach over time to maintaining systems
● TL;DR

○ If a pet goes down its all hands on deck to replace it
○ If a cattle node goes down, simply spawn up another one - even

automatically

Pets

Pets vs Cattle - Pets
● Early days you’d install a computer
● Argue over the carefully picked hostname for it
● Hand crafted an installation
● “Lovingly” watched as it grew and evolved over time
● Eventually it would be a tangled mess of interconnecting dependencies
● Treated it like a pet and looked after it - if it disappeared could you even

reproduce it?

Cattle

Pets vs Cattle - Cattle
● Containers and better deployment methods means we don’t have to keep

things around
● If a server isn’t working right, take it out and replace it
● Easy to do with the right deployment and scaling technology
● Can still keep the misbehaving server for diagnose, but getting it out of

production and replace it first
● Allows easy scalability - just add more cattle
● No server is irreplacable

Infrastructure as Code (IaC)
● New paradigm for managing servers
● Configuration is defined in files rather than a running system
● Can be done on bare metal hardware as well as cloud
● Increases the repeatability of deployments and scaling systems
● Usually involves configuration management / orchestration and CI / CD
● Server is not source of truth for config
● Not just config backups
● Push from code rather than pull from server

Deployment vs Provisioning vs Orchestration vs
Configuration Management
Deployment is a rollout of an application onto an existing server

Provisioning is getting a server ready to use

Configuration Management is configuring servers in an automated and repeatable
fashion

Orchestration is coordinating multiple systems together

Configuration Management
All have Linux servers and Linux/Windows agents
Tool Arch Language Setup Deployment

Puppet Multi-master Puppet DSL and
Ruby ERB
templates

Master and
agent

Pull

Chef Master-slave Ruby DSL Master and
agent

Pull

Ansible Masterless YAML Master
anywhere, ssh
to clients

Push

SaltStack Multiple masters
configured

YAML Master and
minions

Push

Mutable vs Immutable Infrastructure
● Mutable Infrastructure

○ Uses config management or similar to roll out changes to services
○ Can lead to config drift over time - ie, upgrade a package, config can change
○ Perhaps config mgmt doesn’t cover everything on the node

● Immutable Infrastructure
○ No changes made to running systems
○ Use containers / VMs that are replaced by new images

CI / CD
● What is CI/CD?
● Short for Continuous Integration / Continuous Deployment
● Don’t need to do both, but term is together because the techniques are so

close
● Continuous Integration

○ All changes to codebase are tested before being accepted in
● Continuous Deployment

○ After changes have been tested they can be rolled out to either testing or
production

● Uses a tool like Jenkins, CircleCI, Atlassian Bamboo or TeamCity

Storage - First we played with blocks
● Filesystems made from single disks attached to computers
● Grew to RAID to “cluster” disks together
● Then grew to SANs/NAS where the disks weren’t directly attached to

computers
● Then grew to distributed storage (Gluster, DRDB, ZFS, Ceph etc)

Block Storage
● Block storage is like traditional filesystems
● Storage presented to the system using it as a raw device
● Files are split up into raw blocks of data
● Formatted and mounted on the file system
● Like renting space from a storage unit

○ Given a space that is yours
○ You control how things are stored inside the space
○ Usually charged for the entire allocated space

● Strong consistency - read request must give the latest version of data

Storage - Object
● Next step was object storage
● Abstracts away the filesystem details
● Metadata and access control stored on the object
● Unstructured storage of files
● Don’t need to bother with disk failures and making file systems etc

○ Of course someone does, just not you

Object Storage
● Examples are S3, Swift, etc
● Accessed via an API, best for unstructured data
● Like storing your items in a cloak room

○ Your ticket is the API to retrieve it
○ Can be charged on a per item basis

● Unable to edit incrementally, must totally replace the file
● Solves the problems with data growth rate

○ Tried to expand a block base storage beyond hundreds of petabytes?
○ What about doing a filesystem check on it?

● Actual storage in the back end doesn’t matter, can be changed
● Eventually consistent, so can scale well

So What Is The Cloud?
● So what is the cloud?

○ Someone else's computers, obviously
○ Or maybe its your own computers

● API driven virtual machines / containers / functions
● We’re basically providing more and more advanced APIs to cover a lot of

uncomfortable and hard things
● Someone still has to do it
● Basically moving the responsibility away from you for the boring stuff
● Lets you focus on what matters to you

Questions?

Any questions?

Contact me at brad.marshall@gmail.com

or @bradleymarshall on Twitter

mailto:brad.marshall@gmail.com

