
Docker
A Story of Containers

The Road to Orchestration
brad.marshall@gmail.com

Some background

Before we start talking about containers need to
first understand how a normal system works

… well, no.

Standard System Architecture

Virtual Machine Architecture

Container Architecture

What are containers
● Similar to VMs in design
● Isolate and container an application to a self contained unit that can run

where you want
● Remove the dependency on physical hardware
● Both have private space to run processes, own IP address, run things as root
● Biggest difference is that containers share the host kernel

○ Means you have to run the same operating system - no Windows running on Linux

● Containers are much lighter weight that VMs
● Makes it easy to build an application on laptop and move to production very

simply

Container technical details
● Namespaces + Cgroups + UnionFS
● Namespaces are like chroot, but for network config, firewall rules, processes,

mounts, IPC etc - can be shared among processes
● Cgroups are control groups - limits resource allocation to processes
● UnionFS allows images to be build in layers
● Doesn’t need hardware emulation or cpu flags exposed
● Each container runs its own process

System containers
● Process is one that could serve as init process on the host
● Normally systemd, upstart or SysVinit
● Spawns subprocesses like sshd etc
● Usually run in a user namespace, so root process in container is user process

on host
● Example is LXC/LXD

Application containers
● Can run any process
● Uses fewer resources as it runs less than a system container
● Has its own private filesystem, network stack etc

○ Completely isolated from other containers

● Own filesystem means own copy of libraries and dependencies
○ Both good and bad - means you have to maintain multiple versions of things
○ Obvious security implications here - have to know every version of things you’re running

● Examples are:
○ Docker - oldest one
○ Podman - compatible with Docker, but no mgmt daemon
○ rkt

Docker
● 3 main parts

○ Command line
○ REST API
○ Daemon to manage containers / images / networks

● Images from registry, including Docker Hub
● Needs volumes mounted for persistent data

○ Directories mounted from host system into container is simplest

● Applications are usually exposed by mapping ports from host system

Docker Architecture

Installing Docker
Ubuntu

● apt install docker.io

RedHat variants

● yum install docker

Or you can use upstream version - see https://docs.docker.com

https://docs.docker.com

Running Docker containers
$ sudo docker run -d -p 8080:80 --name httpd httpd
Unable to find image 'httpd:latest' locally
latest: Pulling from library/httpd
1ab2bdfe9778: Pull complete
174a8e3bca83: Pull complete
c8e4c9e94892: Pull complete
4568916ecf2d: Pull complete
533f5cf513cb: Pull complete
Digest: sha256:98caed3e3a90ed9db8d25dcbb98eebe0ce56358a9dbbc940d7eb66a8e2b88252
Status: Downloaded newer image for httpd:latest
B33229ad604998f9e1d50104a368e60ff646562b8d18302245e078fe4eec3b7d

$ curl http://localhost:8080
<html><body><h1>It works!</h1></body></html>

http://localhost:8080

Docker Status
$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
b33229ad6049 httpd "httpd-foreground" 7 minutes ago Up 7
minutes 0.0.0.0:8080->80/tcp httpd

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
httpd latest 7d85cc3b2d80 2 weeks ago 154MB

Building Docker containers
Dockerfile:

FROM ubuntu:18.04

RUN apt-get update
RUN apt-get install -y nginx

CMD [“/usr/sbin/nginx”, “-g”, “daemon off;”]

Build Docker containers cont
$ docker build -t bradm/httpd .

$ docker run -d -p 8080:80 -d --name brad-httpd bradm/httpd

Docker Persistent Data
● Bind mounts

○ Create directory on docker host and mount into container

docker run -it --name ubuntu --mount type=bind,source=/mnt/srv,target=/srv

 ubuntu:18.04

● Docker volume
○ Volume managed by docker mounted into container

docker run -it --name ubuntu --mount source=mysrv,target=/srv ubuntu:18.04

Docker Volumes
● See the volumes

$ docker volume ls

● See details on a specific volume

$ docker volume inspect mysrv

● Create a new volume

$ docker volume create --label mytest

Docker-compose
● Used to define multiple containers in a project

○ Example is Wordpress with reverse proxy frontend and db

● Defines multiple containers and relationships between them
● Sets up volumes to store persistent data
● Handles port mapping from external ports to docker ports
● Only restarts changed containers
● Variables allow usage between dev/test/prod etc
● Defined in a yaml file

Using Docker-compose
● Define the containers, relationships, ports, volumes in the yaml file

Bring the services up

$ docker-compose up -d

Shut the services down and delete the volumes

$ docker-compose down -v

Wordpress docker-compose example
version: '3.3'

services:
 db:
 image: mysql:5.7
 volumes:
 - db_data:/var/lib/mysql
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: rootwp
 MYSQL_DATABASE: wordpress
 MYSQL_USER: wordpress
 MYSQL_PASSWORD: wordpress

Wordpress docker-compose example cont
 wordpress:
 depends_on:
 - db
 image: wordpress:latest
 ports:
 - "8000:80"
 restart: always
 environment:
 WORDPRESS_DB_HOST: db:3306
 WORDPRESS_DB_USER: wordpress
 WORDPRESS_DB_PASSWORD: wordpress
 WORDPRESS_DB_NAME: wordpress
 volumes:
 - wordpress:/var/www/html
volumes:
 db_data: {}
 wordpress: {}

Demo time!

References
● https://linuxcontainers.org/
● https://hub.docker.com
● https://www.portainer.io/
● https://podman.io/
● https://coreos.com/rkt/
● https://rancher.com/

https://linuxcontainers.org/
https://hub.docker.com
https://www.portainer.io/
https://podman.io/
https://coreos.com/rkt/
https://rancher.com/

