Docker

A Story of Containers
The Road to Orchestration

brad.marshall@gmail.com

MIIYTIIIHB IS Illlﬂl(!ﬁll!ll

/

i

Some background

Before we start talking about containers need to
first understand how a normal system works

eeL EA

... well, no.

Standard System Architecture

User
Space

Virtual Machine Architecture

Virtual
Machine

User
Space

Container Architecture

Contanier

User Image &
Proceses

Space

MIGRATING CONTAINERSTO/CLOUD

What are containers

e Similar to VMs in design

e Isolate and container an application to a self contained unit that can run
where you want

e Remove the dependency on physical hardware

e Both have private space to run processes, own IP address, run things as root

e Biggest difference is that containers share the host kernel
o Means you have to run the same operating system - no Windows running on Linux

e Containers are much lighter weight that VMs
e Makes it easy to build an application on laptop and move to production very
simply

Container technical details

e Namespaces + Cgroups + UnionFS

Namespaces are like chroot, but for network config, firewall rules, processes,
mounts, IPC etc - can be shared among processes

Cgroups are control groups - limits resource allocation to processes
UnionFS allows images to be build in layers

Doesn’t need hardware emulation or cpu flags exposed

Each container runs its own process

System containers

Process is one that could serve as init process on the host

Normally systemd, upstart or SysVinit

Spawns subprocesses like sshd etc

Usually run in a user namespace, so root process in container is user process
on host

e Example is LXC/LXD

Application containers

e Can run any process
e Uses fewer resources as it runs less than a system container

e Has its own private filesystem, network stack etc
o Completely isolated from other containers

e Own filesystem means own copy of libraries and dependencies

o Both good and bad - means you have to maintain multiple versions of things

o Obvious security implications here - have to know every version of things you're running
e Examples are:

o Docker - oldest one

o Podman - compatible with Docker, but no mgmt daemon
o rkt

Docker

e 3 main parts

o Command line
o RESTAPI
o Daemon to manage containers / images / networks

e |mages from registry, including Docker Hub
e Needs volumes mounted for persistent data
o Directories mounted from host system into container is simplest
e Applications are usually exposed by mapping ports from host system

Docker Architecture

Images Containers

Daemon

V,
. ,’
i

A ﬁ* |
ONEMORETIME

Installing Docker

Ubuntu

e apt install docker.io
RedHat variants

e yum install docker

Or you can use upstream version - see https://docs.docker.com

https://docs.docker.com

Running Docker containers

$ sudo docker run -d -p 8080:80 --name httpd httpd

Unable to find image 'httpd:latest' locally

latest: Pulling from library/httpd

1ab2bdfe9778: Pull complete

174a8e3bca83: Pull complete

c8e4c9e94892: Pull complete

4568916ecf2d: Pull complete

533f5cf513cb: Pull complete

Digest: sha256:98caed3e3a90ed9db8d25dcbb98eebe0ce56358a9dbbc940d7eb66a8e2b88252
Status: Downloaded newer image for httpd:latest
B33229ad604998f9e¢1d50104a368e60ff646562b8d18302245e078fe4eec3b7d

$ curl http://localhost:8080
<htmlI><body><h1>It works!</h1></body></html|>

http://localhost:8080

Docker Status

$ sudo docker ps

CONTAINER ID IMAGE

PORTS NAMES
b33229%9ad6049 httpd

minutes 0.0.0.0:8080->80/tcp

S sudo docker images
REPOSITORY TAG
httpd latest

COMMAND
"httpd-foreground"

httpd

IMAGE ID
7d85cc3b2d80

CREATED

7 minutes ago

CREATED
2 weeks ago

STATUS

Up 7

SIZE
154MB

xdgll’ |

}L_,ﬂll RE 'I'EllINGJME

'vnu STILL DONT MASTER
THE nncmﬂu SYNTAX?L

Building Docker containers

Dockerfile:
FROM ubuntu:18.04

RUN apt-get update
RUN apt-get 1nstall -y nginx

144

CMD [“/usr/sbin/nginx”, “-g

4

“daemon off;”]

Build Docker containers cont

$ docker build -t bradm/httpd .

S docker run -d -p 8080:80 -d —--name brad-httpd bradm/httpd

Docker Persistent Data

e Bind mounts
o Create directory on docker host and mount into container

docker run -it --name ubuntu --mount type=bind, source=/mnt/srv,target=/srv

ubuntu:18.04

e Docker volume
o Volume managed by docker mounted into container

docker run -it --name ubuntu --mount source=mysrv,target=/srv ubuntu:18.04

Docker Volumes

e See the volumes

S docker volume 1s

e See details on a specific volume

$ docker volume inspect mysrv

e Create a new volume

S docker volume create --label mytest

Docker-compose

Used to define multiple containers in a project
o Example is Wordpress with reverse proxy frontend and db

Defines multiple containers and relationships between them
Sets up volumes to store persistent data

Handles port mapping from external ports to docker ports
Only restarts changed containers

Variables allow usage between dev/test/prod etc

Defined in a yaml file

Using Docker-compose

e Define the containers, relationships, ports, volumes in the yaml file

Bring the services up
$ docker-compose up -d
Shut the services down and delete the volumes

$ docker-compose down -v

Wordpress docker-compose example

version: '3.3'

services:
db:
image: mysgl:5.7
volumes:

- db data:/var/lib/mysql
restart: always
environment:

MYSQL ROOT PASSWORD: rootwp

MYSQL DATABASE: wordpress

MYSQL USER: wordpress

MYSQL PASSWORD: wordpress

Wordpress docker-compose example cont

wordpress:
depends_on:
- db
image: wordpress:latest
ports:
- "8000:80"
restart: always
environment:
WORDPRESS DB HOST: db:3306
WORDPRESS DB USER: wordpress
WORDPRESS DB PASSWORD: wordpress
WORDPRESS DB NAME: wordpress
volumes:
- wordpress:/var/www/html
volumes:
db data: {}
wordpress: {}

Demo time!

References

https://linuxcontainers.orq/

https://hub.docker.com

https://www.portainer.io/

https://podman.io/

https://coreos.com/rkt/

https://rancher.com/

https://linuxcontainers.org/
https://hub.docker.com
https://www.portainer.io/
https://podman.io/
https://coreos.com/rkt/
https://rancher.com/

